Latent topics-based relevance feedback for video retrieval

نویسندگان

  • Rubén Fernández-Beltran
  • Filiberto Pla
چکیده

This work presents a novel Content-Based Video Retrieval approach in order to cope with the semantic gap challenge by means of latent topics. Firstly, a supervised topic model is proposed to transform the classical retrieval approach into a class discovery problem. Subsequently, a new probabilistic ranking function is deduced from that model to tackle the semantic gap between low-level features and high-level concepts. Finally, a shortterm relevance feedback scheme is defined where queries can be initialised with samples from inside or outside the database. Several retrieval simulations have been carried out using three databases and seven different ranking functions to test the performance of the presented approach. Experiments revealed that the proposed ranking function is able to provide a competitive advantage within the content-based retrieval field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

A Comparative Study of Utilizing Topic Models for Information Retrieval

We explore the utility of different types of topic models for retrieval purposes. Based on prior work, we describe several ways that topic models can be integrated into the retrieval process. We evaluate the effectiveness of different types of topic models within those retrieval approaches. We show that: (1) topic models are effective for document smoothing; (2) more rigorous topic models such ...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Are Semantically Coherent Topic Models Useful for Ad Hoc Information Retrieval?

The current topic modeling approaches for Information Retrieval do not allow to explicitly model query-oriented latent topics. More, the semantic coherence of the topics has never been considered in this field. We propose a model-based feedback approach that learns Latent Dirichlet Allocation topic models on the top-ranked pseudo-relevant feedback, and we measure the semantic coherence of those...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2016